

Indian Minerals Yearbook 2017

(Part- I)

56th Edition

STATE REVIEWS (Madhya Pradesh)

(FINAL RELEASE)

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES

> Indira Bhavan, Civil Lines, NAGPUR - 440 001

PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : cme@ibm.gov.in Website: www.ibm.gov.in

March, 2018

MADHYA PRADESH

Mineral Resources

Madhya Pradesh is the only diamond producing State in the country and is the leading producer of copper conc., diaspore, pyrophyllite, manganese ore, limestone and clay (others). The State hosts the country's 90% diamond, 74% diaspore, 55% laterite, 48% pyrophyllite, 41% molybdenum, 27% dolomite, 19% copper ore, 18% fireclay, 12% manganese and 8% rock phosphate ore resources.

Important mineral occurrences in the State are: bauxite in Balaghat, Guna, Jabalpur, Katni, Mandla, Rewa, Satna, Shahdol, Shivpuri, Sidhi & Vidisha districts; calcite in Barwani, Jhabua, Khandwa & Khargone districts; china clay in Betul, Chhatarpur, Chhindwara, Gwalior, Hoshangabad, Jabalpur, Khargone, Narsinghpur, Raisen, Satna, Shahdol & Sidhi districts; copper in Balaghat, Betul & Jabalpur districts; coal in Betul, Shahdol & Sidhi districts; diamond in Panna district; diaspore & pyrophyllite in Chhatarpur, Shivpuri & Tikamgarh districts; dolomite in Balaghat, Chhindwara, Damoh, Dewas, Harda, Hoshangabad, Jabalpur, Jhabua, Katni, Mandla, Narsinghpur, Sagar and Seoni districts; fireclay in Betul, Chhindwara, Jabalpur, Katni, Narsinghpur, Panna, Sagar, Shahdol & Sidhi districts; iron ore (haematite) in Betul, Gwalior, Jabalpur & Katni districts; limestone in Balaghat, Chhindwara, Damoh, Dhar, Hoshangabad, Jabalpur, Jhabua, Khargone, Katni, Mandsaur, Morena, Narsinghpur, Neemach, Rewa, Sagar, Satna, Sehore, Shahdol & Sidhi districts;

manganese ore in Balaghat and Jhabua districts; ochre in Dhar, Gwalior, Jabalpur, Katni, Mandla, Rewa, Satna, Shahdol & Umaria districts; pyrophyllite in Chhatarpur, Sagar, Shivpuri & Tikamgarh districts; quartz/silica sand in Balaghat, Dewas, Dhar, Jabalpur, Khandwa, Khargone, Morena, Rewa & Shahdol districts; talc/steatite/soapstone in Dhar, Jabalpur, Jhabua, Katni, Narsinghpur & Sagar districts and vermiculite in Jhabua district.

Other minerals that occur in the State are: barytes in Dewas, Dhar, Shivpuri, Sidhi & Tikamgarh districts; calcareous shales (used in slate pencil) in Mandsaur district; felspar in Jabalpur & Shahdol districts; fuller's earth in Mandla district; gold in Jabalpur and Sidhi districts; granite in Betul, Chhatarpur, Chhindwara, Datia, Jhabua, Panna, Seoni & Shivpuri districts; graphite in Betul & Sidhi districts; gypsum in Shahdol district; lead-zinc in Betul district; molybdenum in Balaghat district; potash in Panna district; quartzite in Sehore district; rock phosphate in Chhatarpur, Jhabua & Sagar districts; and sillimanite in Sidhi district (Table - 1). The reserves/resources of coal along with various coalfields in Madhya Pradesh are given in Table - 2.

Exploration & Development

The details of exploration activities conducted by GSI for base metal, iron ore, gold & coal and other various agencies during 2016-17 are furnished in Table - 3.

During 2016-17, National Oil Companies (NOC) continued their operations for exploration of oil and gas in the State.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5			Reserves	ŝ					Remaining	Remaining Resources				E
STD21 STD21 <th< th=""><th></th><th></th><th>roved</th><th>Probable</th><th></th><th></th><th>easibility</th><th>Pre-feasi</th><th>bility</th><th>Measured cTD331</th><th>Indicated STD337</th><th>Inferred STD333</th><th>Reconnaisse STD334</th><th>unce Total</th><th>Total resources</th></th<>			roved	Probable			easibility	Pre-feasi	bility	Measured cTD331	Indicated STD337	Inferred STD333	Reconnaisse STD334	unce Total	Total resources
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			TD122		117710	STD221	STD222						
	-	onne	'	,	'		,	18500	4472	,	35000	233940		291912	291912
		00 tonnes	11979	3313	8299	23591	12566	15084	6013	11061	54484	50590	,	149797	173388
	-	onne	I	,	5175	5175	215327	35077	160421	20250	180226	358636	97476	1067412	1072587
	ay#	00 tonnes	357	474	902	1733	2882	406	3774	621	415	12017		20115	21848
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	000 tonnes	141950	ı	12580	154530	17400	ı	ı	31560	550	79389	ı	128899	283429
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		000 tonnes	1887.93	ı	148.44	2036.37	189.66	·	ı	320.84	4.13	867.5	ı	1382.13	3418.5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-	arat	959500	ı	159	959659	I	1	'	104118	'	27645359	ı	27749477	28709136
	-		2380710	341047 2	814601	5536358	96241	488094	460808	13696	109792	810667	46068	2025365	7561723
		00 tonnes	23765	10078	18714	52557	33685	94599	102857	33030	295222	1584534	114799	2258839	2311395
		onne	'	ı	'	ı	10330	ı	6610	ı	,	339851	ı	356791	356791
uh* tonne - - - - - - - - - - 117200 119304 19304 19304 19304 19304 19304 19304 19304 19304 19304 19304 19304 19304 19304 19304 19304 19304 19304 193000 19304 193000	-	00 tonnes	390	4192	3020	7603	2139	7164	4975	1551	2129	100977	100	119036	126639
y) tonne - - - - - 7788000 77 y) tonne - - - - - 5841000 1947000 - 7788000 77 y) tonne - - - - - 5841000 1947000 - 7788000 7788000 7788000 7788000 7788000 7788000 7788000 7788000 7788000 778800 778800 778800 778800 77 tonne - - - - - - - - 8.4 - 8.4 - 8.4 - - - - - 8.4 -<		onne	'	I	ı	ı	I	ı	I	1	ı	117200	i	117200	117200
ry)tonne $ -$ <th< td=""><td>Gold</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Gold														
y)tonnezzz <td>Ore</td> <td></td>	Ore														
y)tonne8.4tonne000 cum-160-160-160-193324193324193324tonne1885924108000573666057tonne93324193324193324tonne69-69000 tonnes142033635142256206348412365036774233439008146803102679003736660ton000 tonnes14203363579172380787151607731891519167571696783683363teal000 tonnes12534335579172380787151607731891519167527169678368336teal000 tonnes26.125.135.04-36.23teal000 tonnes114.7641.93186.02114841teal000 tonnes16727169678245310336.2336.2410071236.241077teal000 tonnes16727238078715169773189151916757716967836.23teal000 tonnes20227676024	ary)	onne		'		'		·	ı	'	5841000	1947000	·	7788000	7788000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		anne	,		,		,	ï	,	,	6 18	<i>cc c</i>	,	8 4	8
	((1		-	5
	(Dimen Stone) '0	00 cum		160	'	160	'	I	I	I		1885924	108000	1993924	199408^{2}
		tonne	ı	ı	ı	ı	I	ï	'	ı	'	3456660	2280000	5736660	5736660
te) '000 tonnes 44203 3635 14225 62063 48412 3650 36774 23243 9008 146803 10 267900 3 '000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167678 368336 3 '000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167678 368336 3 fetal '000 tonnes - - - 129 117 - 1510 4006 5930 3150 14841 fetal '000 tonnes - - - - 26.12 5.13 5.04 - 36.29 fetal '000 tonnes 816293 1093490 5455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 for<''''''''''''''''''''''''''''''''''''		000 tonnes	I	'	ı	ı	ı			ı	ı	69	ı	69	69
te) '000 tonnes 44203 3635 14225 62063 48412 3650 36774 23243 9008 146803 10 267900 3 '000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167678 368336 3 '000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167527 169678 368336 3 '000 tonnes - - - 129 117 - 1510 4006 5930 3150 14841 fetal '000 tonnes - - - 129 117 - 26.12 5.13 5.04 - 36.29 fetal '000 tonnes 816293 1093490 5455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 fore '000 tonnes 20227 6760 2904 - - 2779 6421 325 10481 2015<															
'000 tonnes 12534 3355 7917 23807 8715 1631 16077 3189 1519 167527 169678 368336 3 fetal '000 tonnes - - - 129 117 - 1510 4006 5930 3150 14841 fetal '000 tonnes - - - 129 117 - 26.12 5.13 5.04 - 36.29 fetal '000 tonnes - - - 26.12 5.13 5.04 - 36.29 fetal '000 tonnes 16.23 1093490 5455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 'Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes - - - - - - - 27823 - 2779 6421 325 10481 2015 - 278		000 tonnes	44203	3635	14225	62063	48412	3650	36774	23243	9008	146803	10	267900	329963
'000 tonnes - - 129 117 - 1510 4006 5930 3150 14841 fetal '000 tonnes - - - 129 117 - 1510 4006 5930 3150 14841 fetal '000 tonnes - - - - - 36.29 fetal '000 tonnes - - - 5.2 4.71 - 114.76 41.93 186.02 101.12 453.74 - '000 tonnes 816293 1093490 5455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 'Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes - - - - - - - 27823 '000 tonnes - - 4551 - - - - 27823 - 27823 - 27823		00 tonnes	12534	3355	7917	23807	8715	1631	16077	3189	1519	167527	169678	368336	392143
000 tonnes - - 129 117 - 1510 4006 5930 3150 14841 Metal 000 tonnes - - - 12 117 - 1510 4006 5930 3150 14841 Metal 000 tonnes - - - - - 36.29 Metal 000 tonnes 1 - - - - 36.29 - 36.29 Metal 000 tonnes 165293 1093490 545312 2455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 ne '000 tonnes 210227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes - - - - - - - 27823 - 2779 6421 325 10481 2015 - 27823 '000 tonnes - - - - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>·</td></td<>														I	·
Metal '000 tonnes - - - - - 36.29 Metal '000 tonnes - - - 5.2 4.71 - 114.76 41.93 186.02 101.12 453.74 - Metal '000 tonnes 816293 1093490 545312 2455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 ne '000 tonnes 816227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes - - - - - - 2779 56.01 80181 2015 - 27823 - 2779 '000 tonnes - - - - - - - - 27823 - - 27823 - 27723 - <td< td=""><td></td><td>000 tonnes</td><td>'</td><td>ı</td><td>·</td><td></td><td>129</td><td>117</td><td>ı</td><td>1510</td><td>4006</td><td>5930</td><td>3150</td><td>14841</td><td>14841</td></td<>		000 tonnes	'	ı	·		129	117	ı	1510	4006	5930	3150	14841	14841
Metal '000 tonnes - - - 5.2 4.71 - 114.76 41.93 186.02 101.12 453.74 - ne '000 tonnes 816293 1093490 545312 2455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 see Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes 20227 6760 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes - - - - - - 27823 - - 27823		000 tonnes	1	I	ı	I	I	I	ī	26.12	5.13	5.04	ī	36.29	36.29
ne '000 tonnes 816293 1093490 545321 2455103 419938 256187 498590 566011 830331 4045838 269859 6886754 93 se Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes 4551 4551		000 tonnes	ı	I	·		5.2	4.71	I	114.76	41.93	186.02	101.12	453.74	453.74
se Ore '000 tonnes 20227 6760 2904 29891 5802 2779 6421 325 10481 2015 - 27823 '000 tonnes 4551 4551		000 tonnes	816293		545321	2455103	419938	256187	498590	566011	830331	4045838	269859	6886754	9341858
'000 tonnes 4551 4551		000 tonnes		6760	2904	29891	5802	2779	6421	325	10481	2015	ı	27823	57713
		000 tonnes	'	ı	4551	4551	I	·	ı	ı	'		ı	'	4551

Table - 1: Reserves/Resources of Minerals as on 1.4.2015: Madhya Pradesh

STATE REVIEWS

(Concld.)
-
Table

			Reserves	səv.					Remainir.	Remaining Resources				E to E
Mineral	Unit	Proved	Probable	ble		Feasibility	Pre-fe	Pre-feasibility	Measured		Inferred	Reconnaiss.	nce T	resources
	-		STD121	STD122	(A)	117016	STD221	STD222	100710	20010	666U16	400UI0	4 (5)	(A+B)
Molybdenum														
Ore	tonne	·		'	'	'	ı	ı	ı	ı	8000000	ı	8000000	8000000
Contained														
MoS_2	tonne	'	I	'	'	ı	I	ı		ı	5020		5020	5020
Ochre [#]	tonne	1605342		194757 1895247	3695346	681904	1653225	5402710	356344	2577575	3732142	749250	15153150	18848495
Potash	Million tonnes	- səu	'	'	'	'	·	,	ı	1206	'		1206	1206
Pyrophyllite [#]	tonne	9786485	2242501 1907116		13936102	13936102 1860354	2976581	2738198	520801	3294772	2984100	248405	14623211	28559313
Quartzite#	'000 tonnes		'	'			ı				832		832	832
Quartz-														
Silica Sand [#]	'000 tonnes	129	30	1781	1940	516	ı	920	791	316	2717	ı	5261	7201
Rock														
Phosphate	tonne	5999399		5179 1492370	7496948	7496948 6460616 14981336	14981336	15702042	'	2730000	10629258	50625	50553877	58050825
Shale [#]	'000 tonnes	55	6	2	99	5 295		1459			33		1787	1853
Sillimanite	tonne	I	1	I			ı	ı		ı	0	101600	101600	101600
Silver														
Ore	tonne	I	ı	I			ı	ı	I	2096000	1120000	ı	3216000	3216000
Metal	tonne	1	1	I			I	I	I	150.61	9.25	ı	159.86	159.86
Talc-Steatite-														
Soapstone [#]	'000 tonnes	185	20	79	283	179	378	1609	1	1679	6107	ı	9952	10235
Vermiculite	tonne	I	1	I		- 197	ı	66	ı	ı	99	,	329	329

11-4

Figures rounded off Note: The proved and indicated balance recoverable reserves of coal bed methane (CBM) in the State as on 01.04.2016 were 32.13 billion cu m # Declared as minor mineral vide Gazette Notification dated 10.02.2015 ## Minor Mineral before Gazette Notification dated 10.02.2015

STATE REVIEWS

	Reserves/Resource			(In million tonnes
Coalfield	Proved	Indicated	Inferred	Total
Total	11268.69	12759.67	3644.84	27673.20
Johilla	185.08	104.09	32.83	322.00
Umaria	177.70	3.59	_	181.29
Pench-Kanhan	1476.88	970.34	733.05	3180.27
Pathakhera	290.80	88.13	68.00	446.93
Gurgunda	-	84.92	53.39	138.31
Mohpani	7.83	_	_	7.83
Sohagpur	1856.81	5747.90	312.80	7917.51
Singrauli	7273.59	5760.70	2444.77	15479.06

Table – 2 : Reserves/Resources of Coal as on 1.4.2017 : Madhya Pradesh

Source: Coal Directory of India, 2016-17

Table – 3 : Details of Exploration Activities in Madhya Pradesh, 2016-17

Agency/	Location	Μ	apping	Dri	lling	Sampling	Remarks
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
GSI Base Metal	(Cu, Pb & Zn)						
Betul	Biskhan block	-	-	11	1589.80	this ar total zone boreh sulph miner dissen films chalco from 1 of 2 b thick	g G2 stage, general exploration in rea for basemetals mineralisation, a 300 m strike length of potentia was taken up by drilling 1 oles. Nine boreholes intersected ide mineralisation. Sulphide alisation occurs in the form o nination, streaks, stringers and this of pyrite, sphalerite and occasiona opyrite. The visual estimate varie 1% to 2% sulphides. Analytic result oreholes show presence of a 29.5 m Zn zone with average 1.43% Zn a att-off.
	Ghisi block	-	-	13	972	basen miner along length host r garnet – cl miner dissen and th along miner patch estima some some of bor or two m zino	stage general exploration for netals associated polymetallic alisation has been carried out by with drilling, a total 500 m strike was taken up by drilling. The main ock for sulphide mineralisation is iferous quartz – muscovite – biotite hlorite schist. The sulphide alisation occurs in the form o ninations, specks, streaks, stingers in bands of pyrite and sphalerite with occasional chalcopyrite. The alisation is not uniform and is y in nature. In general, visua te shows 1 to 1.5% sulphides with patches of 2 to 3% sulphides in boreholes. The chemical analysis eholes indicates the presence of one o zone with average 0.71% X 4.35 c, 0.2% X 5.0 m, 0.37% X 2.20 m o X 9.18 m and 0.57% X 12.40 m

Agency/	Location	Μ	apping	Dri	lling	Sampling	Remarks
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
Gold	Jangaldheri block Betul Belt	-	_	6	1025.6	met beer len; exp dril dril sulj dep var sulj forn stre pyr occ min pato sulj cher pres enr 0.5 1.4	t stage general exploration for base als mineralisation in this belt has n carried out. A total of 400 m strike gth was taken up for G-2 stage loration and 6 boreholes were led comprising a total of 1025.6 n ling. All boreholes intersected phide mineralisation through the th & intensity of mineralisation y from borehole to borehole. The phide mineralisation occurs in the m of disseminations, specks eaks, stringers and thin bands o ite & sphalerite along with asional chalcopyrite. The mical analysis of borehole indicate sence of two to four zones of zind ichment of 0.050% X 1.12 m 9% X 2.49 m, 1.21% X 2.24 m 0% X 9.14 m, 0.69% X 1.87 m 7% X 4.88 m, 0.55% X 3.00 m and 4% X 13.62 m.
Tikamgarh	Bundelkhand grani complex, Gotet are		-	-	-	sulj carr in eith whi cha cov pyr sulj witi is a E-V Mir witi indi evic alte are Alt mir pro and adv cha dias the maj mir vali	stage search for gold and associated phide mineralisation has been ried out in this area. Mineralisation the mapped area is represented the mapped area is represented the mapped area is represented the includes minerals pyrite loopyrite, malachite, bornite endite, magnetite, haematite rhotite and sphalerite. Profuse phide mineralisation is confined hin the hornblende granite, which again controlled by NW-SE and V trending shear zone the and alteration icate its hydrothermal origin. Field dence shows that the hydrotherma ration and sulphide mineralisation contemporaneous in nature eration is manifested by pylitic alteration which is randon sporadic in space. Besides ranced argillic alteration racterised by pyrophyllite and spore is also evidenced in some o quartz reefs and quartz vein. In pped area, incidences o rearalisation are evidenced and ues of different elements do no our any further major exploration type in the area.

Agency/ Mineral/	Location	М	apping	Dri	lling	Sampling (No.)	Remarks Reserves/Resources estimated
District		Scale	Area (sq km)	No. of boreholes	Meterage	(100.)	Reserves/Resources estimated
Katni	Imaliya block Sleemanabad area	-		6	963.53	-	G2 stage general exploration for gold, silver and basemetal has been carried out in this area. Out of of boreholes drilled, two were drilled at 60 m, one at 90 m and three at 120 m of vertical intersection of potential zone. In Imaliya block mineralisation mainly occurs in two types: one is in massiv sulphide form and another in vein veinlets (Paper thin to cm thick) Massive sulphide mineralisation was found in 40° to 50° witt respect to core axis while vei occurs in parallel or at 70° to 80 with respect to core axis. Visually pyrite, chalcopyrite, arsenopyrite bornite and sphalerite wer identified in the cores. Gol- mineralisation is hosted by dolomite with quartz veins/veinlet containing sulphide mineralis Analytical results of 8 core sample revealed values of gold (Au between 2 and 0.27 ppm (analyse- by AAS). Ag varies between 50 and 15 ppm.
Sidhi	Chakariya block	_	-	6	855.00	-	G2 satge general exploration for gold mineralisation has been carried out in this block followed by drilling. In this block, drilling was carried out with two 1 st leve boreholes of close spaced drilling (50 m borehole interval) and five 2 nd level boreholes of 100 m vertical intersection. A total o 50 cu.m trenching was carried ou along the azimuth of boreholes to confirm surface extension o the mineralised zone. The associated sulphide minerals with gold mineralisation include arsenopyrite, pyrite, galena chalcopyrite and pyrrhotite (a places) as primary sulphides and scorodite as alteration product o arsenopyrite, which has been used as pathfinder mineral for gold The Au values in 'scorodite' beer rock samples are promising with Au values ranging from 2.06 to 9.16 ppm. Whereas Au values in grey quartz vein range from 0.72 to 2.39 ppm. The value of Cu ranges from 5 to 760 ppm, Pl

Agency/ Mineral/	Location	Ma	pping	Dri	lling	Sampling (No.)	Remarks Reserves/Resources estimated
District		Scale	Area (sq km)	No. of boreholes	Meterage	(110.)	Reserves/Resources estimated
			(84 1111)				from 5 to 210 ppm, Zn from 5 to 60 ppm, Co from 5 to 50 ppm, Ag from 0.5 to 10 ppm and Ni from 5 to 45 ppm.
ingrauli	Amalihwa-Hatl Kapurdei area	ipathar -	-	-	-	-	G4 stage reconnaissance survey for gold and associated sulphide mineralisation has been carried out in this area by mapping. Two WNW-ESE trending sulphide mineralised zones were delineated in the mapped area in rocks of Parsoi Formation of Mahakoshal Group. Vein type and disseminated style of mineralisation were noted in the mineralised zones. Arsenopyrite, scorodite, galena, pyrite and chalcopyrite are the principal sulphide minerals found in the mineralised zones. Primary ore textures related to open space filling or deposition are common. The propylitic alteration of host rocks can be traced for a few meters around the mineralised quartz veins with no distinct zonation.
ron ore Gwalior	Motijhil- Akbarpur Area	1:12500 1:2000	10 1.5	-	-	-	G3 level preliminary investigation for iron ore was carried out in this area along with detailed mapping and large-scale mapping. About 1 km strike length with 600 m width of iron ore mineralisation was delineated on the basis of detailed geological mapping and sampling in Akbarpur block. In Motijhil block the delineated iron ore mineralisation was of 800 m strike length & 400 m width. Drilling has been completed. Ore zones were identified with cut-off grade of 30% based on the visual estimation and partial analytical results of core samples.
Jabalpur	Sihora- Gosalpur area	1:12500 1:5000	100 0.5	- - 11-8	-	250	G4 stage investigation for iron ore was taken up in Sihora-Gosalpur area. Total 150 bedrock samples (BRS), 5 petro chemical samples (PCS) and 50 pit trench samples (PTS) through 50 cu.m trenching were collected to identify the possible existence of the iron ore. Analytical results received so far show average iron content ranging from 40-42%. Five BRS samples of suspected manganese mineralisation collected from brecciated zone (located near Tola village) show manganese values between 28.44 and 59.62%. (Contd.

Table – 3 (Contd.)

Agency/	Location	Ma	apping	Dri	lling	Sampling	Remarks
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
Jabalpur Katni, Rewa, Sidhi Shahdol and Singrauli	Mahakoshal Belt	-	-	-	-	-	G4 stage reconnaissance survey was taken up for Iron ore in this belt. In some areas viz. Sleemnabad, Jhinna Pipariya, Kuan and Rajarwara, LSM and detailed mapping was recommended to trace the BIF, manganese occurrences and bauxite deposits in selective areas for delineating primary and secondary enrichment beneath the lateritic cap zone.
Tikamgarh	Dhaurra- Urdaurra Area	1:12500 1:4000	2 1.5	2	207.0	-	G4 stage reconnaissance survey for iron ore by large- scale mapping and detailed mapping along with a total of 207 m drilling in two scout boreholes was carried out to study the subsurface extension of iron ore mineralisation. There are 3 major bands of BIF occurring as enclaves within gneisses near Dhaukan-Dhaurra-Urdaurra villages.The true thickness of mineralised zones varies from 65.22 to 38.79 m and Fe content varies between 40 and 57% in the analysed core samples.
Coal Chhindwara	Dhorakuhi sector, Pench valley Coalfield,	-	3.0	4	1663.45	-	G3 stage exploration for coal was carried out. A total of 1663.45 m drilling was carried out in four boreholes. Five regional Barakar coal seams (I to V in descending order) have been intersected between the depth ranges from 347.56 to 409.03 m. The cumulative coal seam thickness is 12.92 m. Thickness of individual coal seam varies from 0.64 (Seam-II) to 5.05 m (Seam-IV).
Shahdol	Lamru block Sohagpur Coalfield,	1:10000	5.0	9	2712.60	-	G2 stage exploration for coal was carried out in this block. Barakar Formation is the coal bearing horizon in the Lamru block of Sohagpur Coalfield. Four regional Barakar coal seams (I to IV in ascending order) along with few local seams have been intersected within the depth of 105.85 to 288.00 m with cumulative coal thickness ranging from 0.05 to 7.55 m. In the western part of the area, rgional Seam-III is the thickest and most persistent seam. However, Seam II has attained considerable thickness particularly in the southern part of the block and occurs as the thickest seam. (Contd.)

Table – 3 (Contd.)

Agency/ Mineral/	Location	Ma	pping	Dril	ling	Sampling (No.)	Remarks Reserves/Resources estimated
District		Scale	Area (sq km)	No. of boreholes	Meterage	(110.)	Keseives/Kesources estimated
Shahdol	Kirhai block Sohagpur Coalfield,	1:10000	5.0	-	2698.85	-	G2 stage exploration for coal was carried out in this block. Mapping revels that the major part of the block is covered with calcareous sandstone of Lameta Formation. Coal bearing horizon in Kirhai block is restricted within Barakar Formation. Three regional Barakar coal seams along with two local seams have beer intersected within the depths of 135.40 to 278.50 m with cumulative coal thickness ranging from 0.55 m to 5.70 m. Seam-II is the most important regional Barakar coal seam in terms of thickness and regional persistency.
Singrauli	Pachaur block Sohagpur Coalfield,	1:10000	3.0		3132.20		G2 stage exploration for coal was carried out in this block. Pachaux block is located in the north-easterr part of main sub-basin of Singrauli Coalfield in Singrauli district. The area is covered by rocks of Ranigan formation. Barren Measures are found to be 249.14 to 278.40 m thick while Barakar Formation shows a maximum of 400.26 m thickness. The middle part of the entire Barakar sequence is the most important as it contains all the regional coal seams of economic importance in the basin. A total of 3132.20 m drilling was done. An area of 3 sq km has been covered by large- scale mapping (RF 1:10,000). The regional exploration has established development of four regional (R-I to R-IV) and a few local Raniganj coal seams. The thickness of coal seams ranges from less than a metre to 5.77 m. The dip extension of thicker coal seam (Seam R-II) has beer established for a distance of about 3.5 to 4 km. Barakar Formation contains thicker and important coal seams.Within Barakar Formation seven regional (Seam I to VII) and a few local coal seams ranging in thickness from less than a metre to 13.90 m (Seam VI) were intersected between depth range of 407.96 (Seam VII) and 763.9 8 m (Seam-I). Barakan Seam VI is the most important seam in terms of its thickness and regional

Table – 3 (Contd.)

Agency/ Mineral/	Location	Ma	pping	Dril	ling	Sampling	Remarks Reserves/Resources estimated
District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
							extension of Seam VI has been established for a distance of about 4.5 to 5 km and 2 to 2.5 km respectively
Manganese Balaghat Vanadium	western block of ukwa	-	-	6	1071.35	-	G2 level general exploration was carried out for manganess mineralisation in this block. In Western Ukwa block, drilling was done with 6 boreholes for second and third level to know strike and depth continuity of manganess horizon. A total of 10.015 m thick manganese ore horizon was intersected in 6 different boreholes with thickness of ore horizon varies from 0.15 m to3.61 m.
Molybdenum	Ganeshpur- Rohaniya- Salhana area,	1:10000	100	-	-	-	G4 level reconnaissance survey for vanadium and basemetal was taken up in Mahakoshal group of rocks in Ganeshpur-Rohaniya-Salhana area. Katni district. Mineralisation in the area is mainly surficial in nature. Cubes of magnetite observed on the surface of dolomite, pyrite cubes, flakes of chalcopyrite, malachite staining epidotisation and vug structures were also noticed. Dolomite bands were identified. However, no prominent evidence of titaniferrous magnetite mineralisation was found.
Chhatarpur	Sandna- Garha area,	-	-	-	-	-	G4 level survey for molybdenum and related sulphide mineralisation was taken up in Bundelkhand Granitic complex in Sandna – Garha area Chhatarpur district. Molybdenite mineralisation is characterised by studded orange yellow hallows which is due to oxidation followed by leaching of molybdenite. Silver colour chunks of molybdenite along with orange yellow hallow had been noticed withir medium grained granite near Bendari village. Disseminated molybdenite within medium granined granite were also noticed near Bendari village.
Jhabua	Khari-Talawadi- Kherli-Mongra, Block - I & Kherira-Sejawada- Sanda-Mathana Block - II	1:50000 1:10000	200 100	-	-	-	G4 stage reconnaissance was carried out in parts of Bagh basin. Block covers 70 sq.km area and divided into five sectors. The central part of block -I namely Khari-Takari, Dabri- Talawadi-Bamanbardi and Kherli-

Agency/	Location	Ma	apping	Dril	ling	Sampling	Remarks Reserves/Resources estimated
Mineral/ District		Scale	Area (sq km)	No. of boreholes	Meterage	(No.)	Reserves/Resources estimated
							Mogra sectors is probably good host of limestone in the area with thickness varying from 1 to 15 m. Block-II covers about 33 sq km area and not very promising.
Satna	Naubasta- Kolard Limestone block	1:1000	15	5	294.00	111	Estimated about 98.625 million tonnes of limestone resources with CaO 44.61%, MgO 2.35%, SiO ₂ 10.52%, Al ₂ O ₃ 1.64%, Fe ₂ O ₃ 1.32%, & LOI 37.41% under 334 category.
	Jamodi- Mahanna block	1:10000	31	5	274.00	106	Estimated about 297.317 million tonnes of limestone resources with CaO 44.66%, MgO 1.78%, SiO ₂ 10.82%, Al ₂ O ₃ 2.19%, Fe ₂ O ₃ 1.45%, & LOI 36.82% under 334 category.
	Gunchihai block	1:10000	6.5	5	262.00	104	Estimated about 116.831 million tonnes of limestone resources with CaO 45.48%, MgO 2.31%, SiO ₂ 10.13%, Al ₂ O ₃ 2.09%, Fe ₂ O ₃ 1.38%, & LOI 37.91% under 334 category.
Glauconite Singrauli	Bichhiya block	-	2	-	-	149	During G3 stage preliminary exploration for glauconite shale/ sandstone, details mapping of about 2 sq km have been carried out in Bichhiya Block. The approximate cumulative thickness of glauconitic shale only, ranges from 0.74 to 5.48m with an average of 3.11 m. About 149 core samples were collected for estimation of grade of mineralised zone.

Production

Madhya Pradesh was the sole producer of diamond.

The value of minor minerals production was estimated at ` 1,097 crore for the year 2016-17.

The number of reporting mines in Madhya Pradesh was 198 in 2016-17 in case of MCDR minerals.

Mineral-based Industry

The present status of each mineral-based industry is not readily available. However, the important large and medium-scale mineral-based industries in organised sector in the State are furnished in Table-5.

Table – 4 : Mineral Production in Madhya Pradesh, 2014-15 to 2016-17 (Excluding Atomic Minerals)

(Value in ` '000)

		2014-15			2015-16			2016-17 (P)		
Mineral	Unit	No. of mines	Quantit	y Value	No. of mines	C	ity Value	No. of mines	Quantity	Value \$
All Minerals		398		141886741	280		161371536	268		27339996
Coal	'000t	70	87609	111478200	70	107714	132254900	70	105013	-
Bauxite	t	23	831899	526735	22	684288	479401	18	658375	501600
Copper Ore	t	-	2378912	-	-	2536580	-	-	2415330	-
Copper Conc.	t	1	57551	2480829	1	79281	3315629	1	68187	3023674
Iron Ore	'000t	19	4193	2464797	19	2447	1475651	15	1730	677950
Manganese Or	e t	44	877994	5219983	45	766776	3334907	42	648132	5051691
Phosphorite	t	3	79264	67263	3	66260	55602	3	68803	58240
Calcite#	t	1	22	6	-	-	-	-	-	-
Clay (others)#	t	-	365273	50420	-	-	-	-	-	-
Diamond	crt	2	36107	613504	2	36044	621441	2	36516	639596
Diaspore*#	t	-	4717	9652	-	-	-	-	-	-
Dolomite [#]	t	49	542637	127068	-	-	-	-	-	-
Fireclay#	t	8	22642	3593	-	-	-	-	-	-
Kaolin [#]	t	2	10200	1377	-	-	-	-	-	-
Laterite#	t	14	589835	135172	-	-	-	-	-	-
Limestone	'000t	127	39530	7024166	118	39430	8868182	117	35843	6421422
Ochre#	t	9	70422	17329	-	-	-	-	-	-
Pyrophyllite [#]	t	18	115655	107321	-	-	-	-	-	-
Quartz#	t	1	3450	985	-	-	-	-	-	-
Sand (others)#	t	2	16037	1540	-	-	-	-	-	-
Shale#	t	4	384008	5301	-	-	-	-	-	-
Talc Steatite										
Soapstone [#]	t	1	1828	933	-	-	-	-	-	-
Minor										
Minerals [@]		_	_	11550567	_	-	10965823	-	_	10965823

Note: The number of mines excludes minor minerals

* Associated with pyrophyllite @ Figures for earlier years have been repeated as estimates, wherever necessary, because of non-receipt of data # Declared as Minor Mineral vide Gazette Notification dated 10.02.2015

\$ Excludes fuel minerals

Table – 5 : Principal Mineral-based Industries in Madhya Pradesh

Industry/plant

Aluminium/Alumina Hindalco Industries Ltd, Mahan

Asbestos Products

Aluminium, Bargwan, Dist. Singrauli.

Everest Building Products Ltd, Kymore.

Kalani Industries Pvt. Ltd, Pitampur, Dhar.

Ramco Industries Ltd, Maksi, Dist. Shajapur.

Table-5 (Concld.)

	Industry/plant	Capacity ('000 tpy)	
Capacity ('000 tpy)	Coromandel Intermational Ltd (Formerly Liberty Urvarak Ltd), Nirmani Khargone.	100 (SSP)	
360 (Aluminium)	Indra Industries Ltd (Formerly Swastik Ferts & Chems Ltd), Indore, Dhar.	66 (SSP)	
NA	KMN Chemicals & Fertilizers Ltd, Diwanganj, Raisen.	60 (SSP)	
NA	Khaitan Chemical & Fertilizers Ltd, Nimrani, Dist. Khargone. 11	400 (SSP) 5.5 (H ₂ SO ₄)	
NA	NFL, Vijaipur (Unit I & II), Dist. Guna. 20	66.1 (Urea)	
2200	Krishna Phoschem Ltd, Meghnagar, Jhabua.	120 (SSP)	
2200	Madhya Bharat Agro Products Ltd, Rajoa, Sagar.	60 (SSP)	
400	Madhya Bharat Phosphate Pvt. Ltd (Unit I), Diwanganj, Sanchi, Raisen.	132 (SSP)	
1030	Madhya Bharat Phosphate Pvt. Ltd (Unit II), Meghnagar, Jhabua.	165 (SSP)	
2000	Mexican Agro Chemical Ltd (Formerly Asha Phosphates Ltd), Jaggakhedi, Mandsaur	60 (SSP)	
3000	Mukteswar Fertilizers Ltd, Narayankhedi, Ujjain.	60 (SSP)	
2600	Rama Phosphates Ltd, Indore.	165 (SSP)	
2300	Suman Phosphates and Chemicals Ltd, Indore.	330 (SSP)	
960	Varun Fertilizers Pvt. Ltd, Dewas.	100 (SSP)	
4200	Ferro-alloys	4.5	
5600	Crescent Alloys Pvt. Ltd, Seoni.	4.5	
3000	Jalan Ispat Castings Ltd, Meghnagar, Dist. Jhabua.		
3000	MOIL Ferro Manganese Plant, Bharveli, Dist. Balaghat.	10	
NA	Petroleum Refinery Bharat Oman Refineries Ltd, Bina, Dist. Sagar.	6000	
NA	Refractory ACC Refractories, Katni.	65	
45 (SSP)	Premier Refractories India Pvt. Ltd, Katni.	12.9	
66 (SSP)	G; Grinding Unit Note: Data not readily available for fertilizer	and come	
th. 45 (SSP)	industries on respective websites, is therefore taken		

Fertilizer Scenario, 2016/FAI Statistics, 2015-16 and Survey of

Cement Industry & Directory, 2016, respectively

Cement 2 ACC Ltd, Kymore, Dist. Katni. Birla Corpn. Ltd (Satna Cement Works & 2 Birla Vikas Cement), Satna. CCI Ltd, Nayagaon, Dist. Neemuch. Heidelberg Cement (I) Ltd, Narsingarh, Dist. Damoh. Jaiprakash Power Ventures, Singrauli (G). 2 Jaypee Rewa Cement Plant, Dist. Rewa. Jaypee Bela Cement Plant, Dist. Rewa. 2 Jaypee Cement, Sidhee. KJS Cement, Rajnagar, Dist. Satna. Maihar Cement, Maihar, Dist. Satna. 2 5 Prism Cement Ltd (Unit I & II), Satna. Reliance Cement Pvt Ltd, Maihar, Dist. Satna. Ultratech Cement, Vikram Cement Plant, Khor, Dist. Neemuch. Ceramic Roca Bathroom Products Ltd, Dewas. Govind Tiles Pvt Ltd, Garra, Dist. Balaghat. Fertilizer Agro Phos. (India) Ltd, Dewas. 45 (3 Arihant Ferts. & Chems. India Ltd, 66 (Kanawati, Neemuch. Basant Agro Tech (India) Ltd, Jawad, Neemuch. 45 (SSP)